
PROFICY iFIX
HMI/SCADA

Using SQL

PROFICY®SOFTWARE & SERVICES

Proprietary Notice
The information contained in this publication is believed to be accurate and reliable.
However, GE Vernova assumes no responsibilities for any errors, omissions or
inaccuracies. Information contained in the publication is subject to change without notice.

No part of this publication may be reproduced in any form, or stored in a database or
retrieval system, or transmitted or distributed in any form by any means, electronic,
mechanical photocopying, recording or otherwise, without the prior written permission of
GE Vernova. Information contained herein is subject to change without notice.

© 2024 GE Vernova and/or its affiliates. All rights reserved.

Trademark Notices
“GE VERNOVA” is a registered trademark of GE Vernova. The terms “GE” and the GE
Monogram are trademarks of the General Electric Company, and are used with permission.

Microsoft® is a registered trademark of Microsoft Corporation, in the United States and/or
other countries.

All other trademarks are the property of their respective owners.

We want to hear from you. If you have any comments, questions, or suggestions about our
documentation, send them to the following email address:
doc@ge.com

Table of Contents

Using SQL 1

Reference Documents 1

SQL Overview 1

ODBC Term Definitions 2

ODBC Architecture 3

Typical ODBC Architecture 3

Single Tier ODBC Architecture 4

Accessing SQL Data Sources Through VBA 5

Data Access Objects (DAO) 5

Joint Engine Technology (Jet) 6

ODBCDirect 6

Remote Data Objects (RDO) 7

Configuring Data Sources 8

Accessing ODBC Data Sources 8

Accessing an ODBC Data Source with DAO 8

Accessing an ODBC Data Source with RDO 9

iFIX ODBC 10

Understanding the Communication Process 10

To collect and insert process data into a relational database using iFIX ODBC: 11

Understanding Multiple Relational Database Support 11

Setting Up iFIX ODBC 11

To prepare for using iFIX ODBC: 11

To configure iFIX ODBC: 12

Installing an ODBC Driver 12

Configuring an ODBC Data Source 12

System and User Data Sources 13

Running iFIX ODBC as a Service 13

The FIXODBC.ini File 13

Example FIXODBC.ini File 14

© 2024 General Electric Company. All rights reserved. i

Installing and Configuring Data Sources 14

Configuring an ODBC Data Source 15

To configure an ODBC data source: 15

Verifying and Editing an ODBC Data Source 15

To verify information and edit the settings for an ODBC data source: 15

Configuring the SCU for an ODBC Data Source 16

Microsoft Access 16

Installing an Access Driver 16

Creating the Library and Error Tables for Access 16

To create a table in Microsoft Access: 17

Supported Column Data Types for Access 17

Handling Errors for Access 18

Microsoft SQL Server 18

Installing Microsoft SQL Server Database 19

Installing and Configuring the SQL Server Client 19

Installing a SQL Server Driver 19

Creating the Library and Error Tables for SQL Server 19

Supported Column Data Types for SQL Server 20

Oracle 20

Installing and Configuring Client Support 21

To install and configure Oracle 10g client support: 21

Installing the Oracle Driver 21

To install the Oracle driver: 21

Creating the Library and Error Tables for Oracle 22

Supported Column Data Types for Oracle 22

Network Problems and Workarounds 23

Configuring the SQL Task 24

Modifying the Startup Options 24

Using Command Caching 25

Using the SQL Task Dialog Box 25

Using SQL Commands 27

ii © 2024 General Electric Company. All rights reserved.

INSERT Command 27

Explanation 28

UPDATE Command 28

Explanation 28

SELECT Command 29

Explanation 30

Selecting Multiple Rows 30

Single Row 30

Multiple Row 31

Array mode 32

DELETE Command 33

Explanation 34

Stored Procedures 34

Using Multiple Relational Database Support 35

Managing Multiple SQL Connections 35

Using Multiple User Accounts 36

To configure iFIX ODBC: 36

Using Multiple Databases 36

To define this configuration: 37

Storing Commands Centrally 37

To define this configuration: 37

Monitoring and Controlling Database Communication 38

Changing Block Settings Through Links 38

To access these link fields: 38

Manually Triggering the Application 38

Resetting Time/Date/Events Specifications 39

Resetting SQD Blocks 39

Transaction Tracking 40

Displaying Alarm and Application Messages 41

Displaying Alarms 41

Displaying Process Messages 41

© 2024 General Electric Company. All rights reserved. iii

Displaying Alarms 42

Generating Status Reports 42

Backing Up and Restoring Data 43

Backing Up Data 43

Restoring Back-up Data 43

Index 45

iv © 2024 General Electric Company. All rights reserved.

Using SQL

The Using SQL manual is intended for system administrators responsible for interfacing iFIX® to an
ODBC database. This manual assumes an understanding of ODBC relational databases and the SQL
language.

Reference Documents
For related information about iFIX, refer to the following manuals:

 l Setting up the Environment

 l Building a SCADA System

 l Configuring Security Features

 l Implementing Alarms and Messages

 l Using VisiconX

SQL Overview

Structured Query Language (SQL) is a standard language that is used by relational databases to
retrieve, update, and manage data. Although it provides the common syntax for applications to use, it
does not provide a common application program interface (API). Open Database Connectivity (ODBC)
is Microsoft's standard API for accessing, viewing, and modifying data from a variety of relational data-
bases.

To provide access to SQL data sources through the ODBC API, iFIX® allows you to use the following:
the iFIX SQL Interface option, called iFIX ODBC, and Microsoft® Visual Basic® for Applications
through DAO or RDO.

iFIX Paths to SQL Data Sources

© 2024 General Electric Company. All rights reserved. 1

env.chm::/envcover.htm
dbb.chm::/dbbcover.htm
sec.chm::/seccover.htm
alm.chm::/almcover.htm
visi.chm::/vxcover.htm

Both of these options allow you to systematically:

 l Collect and write real-time process data to one or more relational databases.

 l Read data stored in the relational database and write it back to the iFIX process database.

 l Delete data in relational database tables.

 l Back up data and SQL commands to disk if the network fails to maintain a connection to the
server or if the server fails.

 l Execute backed up SQL commands automatically when the connection to the server is re-estab-
lished.

Although you can use either VBA or iFIX ODBC to access SQL data sources, each one has specific cap-
abilities that should be considered when making a choice. In many cases, it will be quicker and easier to
write scripts in the Visual Basic Editor (VBE) that access and manipulate SQL data sources.

As an alternative, iFIX ODBC requires no knowledge of VBA scripting and allows you to perform all of
your SQL tasks. For example, if you want to ensure that your database receives deterministic data, you
should use the database blocks available through iFIX ODBC. When using database blocks, the data is
sent to the database at scan time with no delays.

ODBC Term Definitions

The following is a list of ODBC concepts and terms you may find helpful while reading this manual.

Client Support – the database client support layer usually contains one or more Dynamic Linked
Library (DLL) files in conjunction with configuration files. Database client support is provided by the
database vendor. The ODBC driver layer communicates with the client support layer, as illustrated in
the first figure. Many database vendors offer TCP/IP network support with their product. The specific
files required to communicate using the TCP/IP network protocol is usually part of the client support
layer.

Data Source – a data source consists of the data and the information needed to access the data, such
as the database management system (DBMS), operating system, and network platform.

Database Layer – the database layer is composed of the database engine and the file or collection of
files where the data is actually stored.

Listener Processes – the listener process ties the network protocol to the database engine. This is
really the server part of a database server. The first figure shows three separate listener processes to
demonstrate one possible configuration serving three separate clients. This layer varies widely
depending on database vendors and operating systems.

Network Layer – the network layer is completely separate from the ODBC layers and is specific to the
operating system. It is usually provided with the operating system or by a network provider. The cli-
ent computer and the database server computer each contain this layer.

ODBC Administrator Program– the program used to configure ODBC data sources. Typically
installed in the Control Panel, but can also be installed as a separate executable (ODBCAD32.EXE).

ODBC Application – an application that makes ODBC calls. Since the application communicates to
the ODBC layer, it is database independent. This means an ODBC application can be written and,

2 © 2024 General Electric Company. All rights reserved.

by plugging in various ODBC drivers, can access any database. iFIX ODBC is an ODBC applic-
ation.

ODBC Driver – an ODBC driver translates an ODBC call issued by the application into a specific call
(s) for a particular database. In this module, the application links dynamically to a specific database.
ODBC drivers are available from a variety of sources. Some companies specialize in writing data-
base drivers. They provide a package that contains over a dozen ODBC drivers for various data-
bases. ODBC drivers are often available from the database vendor as well. Often times, the user has
more than one ODBC driver and manufacturer to choose from. The ODBC driver communicates to
the client support layer.

ODBC Driver Manager – a module written by Microsoft that is supplied with most ODBC drivers. It
acts as the layer between the application and any ODBC drivers. In fact, it loads the driver when the
application requests a connection.

NOTE: There is no ODBC software on the database server computer. The ODBC driver on the client trans-
lates the ODBC calls into native database calls that the client support layer can understand. Therefore, by the
time the database request leaves the client machine, it has been totally transformed into a native call for that
database. The listener and engine on the server computer do not know if the request came from an ODBC
application or a native database application.

ODBC Architecture

There are basically two types of ODBC architecture: those that involve multiple tier ODBC drivers and
single tier ODBC drivers.

Multiple tier drivers are more common, and are typically used with a remote database server such as
Oracle® and SQL Server. Multiple tier ODBC drivers process ODBC calls made by the application, but
pass the actual SQL command to the database system.

Single tier drivers, such as the Microsoft® Access® driver, often operate directly on a database file or
files. A single tier ODBC driver processes both ODBC calls and the actual SQL commands. In most
cases, a configuration using a single tier driver can be contained on just one computer.

Typical ODBC Architecture

The following figure illustrates the typical architecture of a relational database server and an ODBC
driver.

© 2024 General Electric Company. All rights reserved. 3

Typical ODBC Architecture

Single Tier ODBC Architecture

The ODBC architecture of Microsoft Access is simpler than the typical server architecture. The fol-
lowing figure illustrates the ODBC architecture of Access and other single tier ODBC drivers.

4 © 2024 General Electric Company. All rights reserved.

Single Tier ODBC Architecture

Note that there is no database server computer, client support layer, or network in the previous figure.
The Access ODBC driver works directly on the database file. In this simple configuration, the database
file is located on the same computer as the application. By using Microsoft networking, Novell networks,
and the like, the database file could be located on another computer just like any other shared file. In this
way, an Access database could be shared among several computers and applications.

Accessing SQL Data Sources Through VBA

VBA is embedded directly into iFIX, allowing you to access SQL data sources from any relational data-
base through the ODBC API. To access the Visual Basic Editor (VBE) in the iFIX WorkSpace from the
Ribbon View, on the Home tab, click the Visual Basic Editor option. In Classic view, on the WorkSpace
menu, click Visual Basic Editor. For complete information on accessing SQL data sources through VBA,
refer to the Writing Scripts manual.

VBA supports two Microsoft technologies that allow iFIX to connect to SQL data sources: Data Access
Objects (DAO) and Remote Data Objects (RDO). Both of these technologies provide an object-based
interface for accessing relational databases. Although either technology can be used, each one has spe-
cific capabilities that should be considered when making a choice.

Data Access Objects (DAO)

DAO is an object-based data access interface that provides access to SQL data sources through VBA.
Using DAO, you can:

 l Retrieve, add, change, or delete data in a database.

 l Create a new database or change the design of an existing database.

 l Implement security to protect your data.

To use DAO within iFIX, you must first set a reference to the Microsoft DAO object library.

NOTE: Microsoft DAO 3.5 no longer supports some of the objects, properties, and methods that were sup-
ported in earlier versions of Microsoft DAO. If necessary, you can set a reference to the Microsoft DAO 2.5/3.0
Compatibility Library, the Microsoft DAO 2.5/3.5 Compatibility Library, or the Microsoft DAO 3.0 Object Library
from the VBE.

Once you have set a reference to the Microsoft DAO object library, you can view the DAO objects in the
Object Browser by selecting DAO in the Project/Library box.

DAO supports two technologies for accessing SQL data sources: Microsoft Joint Engine Technology
(Jet) and ODBCDirect. The DAO technology you use depends on the type of operation you need to per-
form.

The following figure illustrates how DAO uses Jet and ODBCDirect to access a SQL data source.

© 2024 General Electric Company. All rights reserved. 5

vba.chm::/vbacover.htm

Accessing SQL Data Sources with DAO Jet versus DAO ODBCDirect

Joint Engine Technology (Jet)

Jet was designed primarily to access native Jet/Access (.MDB) databases and selected ISAM data-
bases, such as dBase, Paradox, FoxPro, and Btrieve. The following is a list of exclusive Jet capabilities
not offered by ODBCDirect.

Linking remote tables for form and control binding – allows forms or controls to be bound to data in
an ODBC data source.

Heterogeneous data access – allows you to join data stored in different back ends.

Programmatic DDL – provides table definitions and the ability to create or modify tables using Data
Definition Language (DDL).

Support for Find and Seek methods – permits the use of the Find and Seek methods.

Although Jet is capable of accessing ODBC data sources, this functionality is limited and, compared to
ODBCDirect, has two major disadvantages. First, Jet loads the Microsoft Jet database engine even
when it is not a Jet database being accessed. Second, since calls must be passed through the Jet data-
base engine before reaching the ODBC API, Jet is slower than ODBCDirect.

ODBCDirect

As the name suggests, ODBCDirect provides more direct access to ODBC data sources by way of
bypassing the Jet engine. ODBCDirect is a thin DAO wrapper around the RDO interface, meaning it

6 © 2024 General Electric Company. All rights reserved.

routes DAO objects, methods, and properties to equivalent RDO functions. The following is a list of
ODBCDirect advantages not provided by Jet.

Direct data access – allows direct access to ODBC data resources.

Reduced resource requirements – eliminates the resources required by Jet to load the Jet database
engine.

Asynchronous queries – optimizes performance by allowing alternative functions to perform while an
operation completes.

Local batch processing – caches Recordset changes locally and submits the changes to the server in
a single batch.

Remote Data Objects (RDO)

RDO is a thin object layer interface to the ODBC API that is optimized for speed and flexibility. It
provides the same ease of use as DAO, while exposing the low-level power and flexibility of ODBC.
Using RDO, you can:

 l Establish a connection to a SQL data source asynchronously.

 l Submit queries.

 l Perform synchronous or asynchronous operations.

 l Create result sets and cursors.

 l Process the query results.

The following figure illustrates how RDO accesses a SQL data source.

Accessing SQL Data Sources with RDO

RDO incorporates most of the higher-level functions of ODBCDirect, such as support for asynchronous
operations. It also provides additional functionality, such as triggered events for connections and quer-
ies, advanced support for stored procedures and multiple-select queries, and enhanced error trapping.
Since RDO directly calls the ODBC API, it's speed nearly matches that of calling the ODBC API dir-
ectly, and it's use of resources is reduced.

To use RDO within iFIX, you must first set a reference to the Microsoft Remote Data Object library.

© 2024 General Electric Company. All rights reserved. 7

Once you have set a reference to the Microsoft Remote Data Object library, you can view the RDO
objects in the Object Browser by selecting RDO in the Project/Library box.

Configuring Data Sources

Before you can use ODBC with DAO or RDO, you must configure the ODBC data source. You can con-
figure a data source through the Windows Control Panel, as described in the Installing and Configuring
Data Sources chapter, or with Visual Basic code using DAO or RDO.

To configure a data source with DAO, use the RegisterDatabase method and the following syntax:

DBEngine.RegisterDatabase "dbname", "driver", silent, _ attributes

To configure a data source with RDO you use the rdoRegisterDataSource method and the following syn-
tax:

RdoRegisterDataSource, "dsName", "driver", silent, attributes

Accessing ODBC Data Sources

Once you have configured a data source, you are ready to access an ODBC database. DAO and RDO
each have their own unique objects, methods, and properties. However, they both allow you to access
an ODBC data source with just a few simple lines of code. Refer to the following sections for more
details:

 l Accessing an ODBC Data Source with DAO

 l Accessing an ODBC Data Source with RDO

Accessing an ODBC Data Source with DAO

To access an ODBC data source with DAO you must set up the Workspace object, open the database,
and create a record set.

NOTE: All references to the Workspace in conjunction with DAO refer to the Workspace object, not the iFIX
WorkSpace. The Workspace object defines a named session and allows you to open multiple databases and
connections, and manage transactions. It also controls whether your application interacts with data through
Microsoft Jet or ODBCDirect.

To create a Workspace object, use the CreateWorkspace method as shown below.

Set workspace = CreateWorkspace ("name", "user", "password", _ type)

To open a database, use the OpenDatabase method as shown below:

Set database = workspace.OpenDatabase ("dbname", options, _
read-only, connect)

8 © 2024 General Electric Company. All rights reserved.

When using ODBCDirect, you can also use the OpenConnection method to connect to a data source.
The OpenConnection method allows you to perform asynchronous operations and use QueryDef
objects. To connect to a data source using the OpenConnection method, use the code shown below.

Set connection = workspace.OpenConnection ("name", options, _
read-only, connect)

To create a record set, use the OpenRecordset method as shown below.

Set recordset = object.OpenRecordset (type, options, lockedits)

NOTE: To use the MSFlexGrid, you must install it and then set a reference to it by selecting References from
the Tools menu in the VBE. You can use the MSFlexGrid or any similar spreadsheet, such as the VideoSoft
VSFlexGrid, in your applications. GE does not provide the MSFlexGrid; it is referenced in the documentation
for illustration purposes only.

Accessing an ODBC Data Source with RDO

To access an ODBC data source with RDO, you must set up the environment, make a connection, and
create a result set.

To set up the environment, use the rdoEnvironments collection as shown below.

Set en = rdoEngine.redoEnvironments (n)

You can use a variety of methods to connect to a database, including:

 l Declaring an rdoConnection object and using the OpenConnection method of the rdoEnvironment
object.

 l Creating a stand-alone rdoConnection object using the Dim x As New syntax, setting its prop-
erties, and using the EstablishConnection method.

 l Using the EstablishConnection method on an existing rdoConnection object after you have either
created a stand-alone rdoConnection object or you have used the Close method on an existing
rdoConnection object.

You can also create an asynchronous RDO connection using the rdAsyncEnable option of the Estab-
lishConnection method.

You can use a variety of methods to create an rdoResultset object, including:

 l Using the OpenResultset method against an rdoConnection object.

 l Using the OpenResultset method against an rdoQuery object.

 l Creating a stand-alone rdoQuery object, setting its properties, and associating it with a specific
connection using the ActiveConnection property. An rdoResultset object can then be created
against the rdoQuery using the OpenResultset method.

NOTE: To use the MSFlexGrid, you must install it and then set a reference to it by selecting References from
the Tools menu in the VBE. You can use the MSFlexGrid or any similar spreadsheet, such as the VideoSoft
VSFlexGrid, in your applications. GE does not provide the MSFlexGrid; it is referenced in the documentation
for illustration purposes only.

© 2024 General Electric Company. All rights reserved. 9

iFIX ODBC

iFIX ODBC provides communication between relational databases and the iFIX database. The iFIX data-
base can be configured to communicate based on an event, a time, or a combination of both.

iFIX ODBC consists of the:

 l SQL task.

 l SQL Trigger (SQT) database block.

 l SQL Data (SQD) database block.

The SQL task performs the following functions:

 l Executes the SQT blocks that trigger.

 l Retrieves process data from the SQD blocks and inserts the data into the relational database.

 l Selects data from the relational database and writes the data back to the iFIX database.

 l Backs up data in the event of a network failure (backup continues until the primary and secondary
paths are full).

 l Automatically restores data to the relational database once network communications are estab-
lished.

The SQL Trigger block defines:

 l Which SQL commands in the SQL Library Table are used to manipulate data.

 l Whether the SQL commands are backed up in the event that the application loses a connection
with the server.

 l The time or event that triggers the data transfer.

The SQL Data block defines:

 l The data that is collected and transferred.

 l The direction of the data transfer.

Both database blocks communicate with the SQL task, WSQLODC.EXE. This task runs on a SCADA
node and handles communication with the ODBC driver.

If the connection to the relational database is lost, SQL commands and data can be backed up. When
the connection is re-established, SQL commands and data are executed in the order in which they were
backed up. Refer to the Backing Up and Restoring Data section for a more detailed description of the
back-up and restore process.

NOTE: If you copy and paste the SQT and SQD blocks, they will not fire. You must create these blocks in full.

Understanding the Communication Process

The process for collecting and inserting process data into a relational database using iFIX ODBC is out-
lined below.

10 © 2024 General Electric Company. All rights reserved.

 To collect and insert process data into a relational database using iFIX ODBC:

NOTE: In order for this process to work, iFIX must be running. Otherwise, you will receive an error message.

 1. The SQL Trigger block (SQT) triggers; the SQL task reads the SQL command name from the
SQT block.

 2. The SQL task retrieves the associated command from the SQL Library Table.

 3. The SQL task reads the tags specified in the SQL command from the SQL Data block (SQD) and
reads the values associated with these tags from the iFIX database.

 4. The SQL task executes the SQL command and inserts data into or selects data from the rela-
tional database.

 5. If the SQL command is a SELECT command, the retrieved data is written to the iFIX tags defined
in the SQD block.

Understanding Multiple Relational Database Support

iFIX ODBC supports communication to multiple relational databases simultaneously, which allows you
to:

 l Use multiple accounts within one relational database.

 l Read and write data to several different databases.

 l Centrally store commands that can be run in different databases.

Refer to the Using Multiple Relational Database Support section for more information on these scen-
arios and how to configure iFIX ODBC.

Setting Up iFIX ODBC

Complete the following steps before running iFIX ODBC.

 To prepare for using iFIX ODBC:

 1. Set up your relational database on the server along with user accounts and passwords. Consult
your relational database manuals for specific instructions.

 2. Set up the ODBC driver to communicate with iFIX. To do this, use the relational database tools
that come with your SQL software.

 3. Define the SQL commands. To do this, create a library table that contains the SQL commands
you want executed. The examples in this manual use SQLLIB as the SQL command table name.

 4. Create the error log table that stores all SQL runtime error messages that are recorded by the sys-
tem.

 5. Set up or upgrade your network to support communications.

 6. Configure iFIX ODBC.

 7. Confirm that the SCADA node can establish network communications with the server by using
an ODBC test program supplied by your ODBC vendor (such as MSQUERY).

© 2024 General Electric Company. All rights reserved. 11

NOTE: When logging alarms to an Oracle database, you must use the Microsoft Oracle driver or data
loss could occur.

 To configure iFIX ODBC:

 1. Ensure that the SQL task is added to the Configured Task List in the SCU Task Configuration dia-
log box. Refer to the Configuring the SQL Task section for more information on configuring the
SQL task.

 2. Add an account for each relational database you need to communicate with to the Configured
Accounts list in the SCU SQL Configuration dialog box. Refer to the Installing and Configuring
Data Sources section for more information on defining specific accounts.

 3. Configure the SQL task using the Configure SQL Task dialog box in the SCU. Refer to the Con-
figuring the SQL Task section for more information on configuring the SQL task.

 4. Define the SQT and SQD blocks in the iFIX database. Refer to the iFIX Database Reference for
more information on blocks.

Installing an ODBC Driver

ODBC drivers are almost always shipped with the following components:

 l The ODBC driver. There may be more than one driver included in the set. This is the case with
Intersolv's ODBC Data Direct pack and Microsoft Desktop Driver pack.

 l The ODBC Driver manager, ODBC32.DLL.

 l The ODBC Administrator, ODBCAD32.EXE, which is used to add, delete, and configure data
sources.

To install an ODBC driver, run the Setup program from the CD-ROM or the diskette. If given the option
of installing the Driver Manager and Administrator with version checking, do so.

After the driver is installed, an ODBC Administration icon should appear in the Control Panel. Depending
on the driver and the installed ODBC components, the icon may have the 32 insignia. If the ODBC icon
does not appear in the Control Panel, the driver setup program may have installed it in a separate group.

iFIX ODBC only supports 32-bit ODBC drivers. To run iFIX ODBC as a service under Windows, you
must have an ODBC driver built with ODBC 2.5 or later. Refer to the Running iFIX ODBC as a Service
section for more information on running iFIX ODBC as a service.

NOTE: The iFIX ODBC driver truncates the A_EGUDESC field to 4 characters, even though you are allowed
to type in up to 33. Also, only uppercase characters are supported.

Configuring an ODBC Data Source

Once the ODBC driver and administrator have been installed, you can configure ODBC data sources.
Each driver for each database requires different information to make a connection. The one thing they all
have in common is the data source name.

Each data source that you configure to connect to a particular database is identified by the data source
name. When an application needs to connect to a database, the application passes the data source
name, which maps to the information that was configured for that database.

12 © 2024 General Electric Company. All rights reserved.

dbman.chm::/dbmancover.htm

System and User Data Sources

ODBC (specifically the Administrator and Driver Manager) provides the concept of system and user
data sources. Any user can create a system data source and that data source becomes available to any
user. A user data source, on the other hand, is only available to the user who created it.

For example, assume your system has three user accounts: Account1, Account2, and Account3.
Account1 creates a system data source sysAccount1. Account2 creates a user data source user-
Account2. Account3 creates a user data source userAccount3. Account1 can only use sysAccount1.
Account2 can use sysAccount1 and userAccount2. Account3 can use sysAccount1 and userAccount3.

The ODBC Data Source Administrator allows you to create a system data source simply by clicking the
System DSN button and adding the data source. System data sources appear in the System DSN list.
However, when you call up the list of available data sources in the SCU, both system and user (for the
user currently logged in) data sources are listed. If your ODBC driver installs an earlier version of the
driver manager, you can copy the driver manager located in the iFIX Base path to your operating sys-
tem's SYSTEM directory.

Running iFIX ODBC as a Service

You can run iFIX and various tasks, such as the SQL task, as services under Windows. When you do
this, you can log out of the operating system without shutting down iFIX ODBC. This provides a much
higher level of security to your process, because operators can log in and log out of a node before and
after their shift without affecting the process.

In order to run the SQL task (WSQLODC.EXE) as a service, you must use system data sources. If you
attempt to use a user data source, you will get an error similar to the following:

Data source name not found and no default driver specified.

The procedure for configuring a system data source is similar to configuring other data sources. The only
difference is that you must click the System DSN button in the ODBC Data Sources dialog box and add
the data source you want. Refer to the System and User Data Sources section for more information on
system data sources.

Refer to the Installing and Configuring Data Sources section for more specific information on configuring
data sources for each database supported by iFIX ODBC.

The FIXODBC.ini File

The FIXODBC.ini file is used to configure the default settings for iFIX ODBC Driver. The iFIX ODBC driver
is used to construct query strings to return or update iFIX real-time tag information. This driver can be used
in conjunction with third party applications outside of the iFIX software, such as Crystal Reports or Excel.
The iFIX real-time ODBC driver can also be used from within the iFIX WorkSpace, using an ODBC data
source in a VisiconX Data object and then setting a SQL command string to query the desired tag inform-
ation.

© 2024 General Electric Company. All rights reserved. 13

The FIXODBC.ini file basically controls what information can be returned when a query of the iFIX real-time
database is performed using this driver. The number, names, and lengths of the fields that can be returned
are specified by this file. For instance, in iFIX 4.5 we changed the Column Length of the returned value for
the A_CV field, FieldLen004, from 14 to 25 to accommodate a longer field for better precision.

The FIXODBC.ini file is located in the LOCAL folder of your iFIX install. For example: C:\Program Files
(x86)\Proficy\iFIX\LOCAL\FIXODBC.ini.

The fields in this file can be added or deleted to limit or expand the capability of the queries that use this
driver. You can edit this file in a text editor, such as Notepad. After you make any edits, restart iFIX. To see
your results, rerun your ODBC query from either outside of iFIX (for example: Crystal Reports, Excel, etc.)
or from within the iFIX Workspace (via VisiconX, for instance).

Example FIXODBC.ini File

An example of the FIXDOBC.ini file is as follows.

[FIXODBC]
FieldCount=12
Field001=A_ADI
FieldLen001=15
Field002=A_AUTO
FieldLen002=4
Field003=A_CUALM
FieldLen003=8
Field004=A_CV
FieldLen004=25
Field005=A_DESC
FieldLen005=256
Field006=A_ENAB
FieldLen006=3
Field007=A_ETAG
FieldLen007=4
Field008=A_LAALM
FieldLen008=8
Field009=A_NALM
FieldLen009=3
Field010=A_PRI
FieldLen010=10
Field011=A_SCAN
FieldLen011=3
Field012=F_CV
FieldLen012=7
[SQLQuery]
EnableAlternativeQuery=0

Installing and Configuring Data Sources

This chapter provides instructions and tips on installing and configuring Microsoft Access, Microsoft
SQL Server, and Oracle data sources for use with iFIX ODBC. It includes the following sections:

 l Configuring an ODBC Data Source

 l Verifying and Editing an ODBC Data Source

 l Configuring the SCU for an ODBC Data Source

 l Microsoft Access

 l Microsoft SQL Server

14 © 2024 General Electric Company. All rights reserved.

 l Oracle

 l Network Problems and Workarounds

Configuring an ODBC Data Source

To configure an ODBC data source, you must have an ODBC driver installed for the relational database
you want to use. ODBC drivers are often automatically installed and set up when you install the rela-
tional database application.

For more information on whether an ODBC driver has been installed for a particular relational database,
refer to the documentation supplied with the application.

 To configure an ODBC data source:

 1. Click the Start button and point to Programs, Administrative Tools, and then Data Sources
(ODBC). You can also access the Administrative Tools folder from the Control Panel.

The ODBC Data Source Administrator program opens.

 2. On the User DSN tab, click Add. The Create New Data Source dialog box appears.

 3. Select the ODBC driver for the relational database you want to access from the list.

 4. Click Finish. An ODBC Data Source Setup dialog box appears for the ODBC driver you selected.

NOTE: If you do not have the correct ODBC driver installed on your system, an error message appears
instead of the ODBC Data Source Setup dialog box.

 5. In the ODBC Data Source Setup dialog box, enter the required information.

NOTE: Skip steps 6-9 if you are not accessing a Microsoft Access data source and not running iFIX as
a service.

 6. In the System Database area, select the Database option.

 7. Click the System Database button. The Select System Database dialog box appears.

 8. Select the system database (usually C:\ACCESS\SYSTEM.MDA).

 9. Make sure Exclusive and Read Only are unchecked in the Options group.

 10. Click OK in the ODBC Data Source Setup dialog box. The new data source appears in the Data
Sources dialog box.

 11. Click Close.

Verifying and Editing an ODBC Data Source

Once you have configured the settings for an ODBC data source, you can verify that the information is
correct and make changes at any time.

 To verify information and edit the settings for an ODBC data source:

 1. Click the Start button and point to Programs, Administrative Tools, and then Data Sources
(ODBC). You can also access the Administrative Tools folder from the Control Panel.

© 2024 General Electric Company. All rights reserved. 15

The ODBC Data Source Administrator program opens.

 2. On the User DSN tab, select the appropriate data source from the list and click Configure. The
ODBC Data Source Setup dialog box appears for the data source you selected.

 3. Check the settings and make any necessary changes.

 4. In the ODBC Data Source Setup dialog box, click OK.

 5. In the Data Source Administrator dialog box, click OK.

Configuring the SCU for an ODBC Data Source

In order for iFIX to connect to an ODBC data source, an entry must be added to the SQL connection list
in the SCU.

Microsoft Access

This section provides instructions and tips specific to installing and configuring Microsoft Access data
sources for use with iFIX ODBC. It includes the following topics:

 l Installing an Access Driver

 l Creating the Library and Error Tables for Access

 l Supported Column Data Types for Access

 l Handling Errors for Access

Installing an Access Driver

iFIX ODBC supports Microsoft Access version 2.x. Various sources for this driver include Microsoft
Word™, Visual Basic™, Excel™, and the Microsoft Desktop Driver Pack 2.0. This package includes
drivers for Access, Excel, FoxPro®, and others. It can be obtained from Microsoft at a very modest cost
(enough to cover Microsoft's manufacturing cost).

To obtain the driver from Word, Excel, or Visual Basic, install the driver as part of the setup procedure for
these products. Refer to the documentation for each of these products for setup instructions. If you need
to install a driver from the ODBC driver pack, use the instructions provided in the driver pack's doc-
umentation.

Creating the Library and Error Tables for Access

If you are using iFIX ODBC to communicate with the iFIX process database, you must create tables in
Microsoft Access to store the SQL commands and errors.

16 © 2024 General Electric Company. All rights reserved.

 To create a table in Microsoft Access:

 1. Start Access.

 2. On the File menu, click Open. Select a database to open, such as
C:\ACCESS\EXAMPLE.MDB.

 3. Click the Tables icon.

 4. Click New to add a new table.

The spreadsheet displayed has entries for the field (column) name, its datatype, and an optional descrip-
tion. As you move from row to row, the attributes for that field are displayed below the spreadsheet. Use
the following tables in this section as guides for the two tables.

Field
name

Data-
type

Notes

sqlnameText,
size
8

Select Yes for the Indexed attribute. Also, click the Key icon in the toolbar to
make this the Primary Key for the table.

sqlcmd Text,
size
100 -
255

If any of your SQL commands are longer than 255 characters, make this field a
Memo field. This allows up to 64,000 characters. You must also modify the
/CLn parameter to allow for greater than 255 characters. Refer to the Modifying
the Startup Options section for more information on modifying the /CLn para-
meter.

Microsoft Access SQLLIB Table

Field name Datatype
td Date/Time
node Text, size 8
tag Text, size 256
sqlname Text, size 8
fix_err Text, size 100
sql_err Text, size 250
prog_err Text, size 100

Microsoft Access SQLERR Table

The SQLERR table does not need a key, but you can create a counter field to use as a key if you wish.

NOTE: SQLLIB and SQLERR are the default names for the tables. You can name them anything you want as
long as those names are reflected in the SCU. However, the field (column) names must be entered exactly
as shown. (Access column names are not case sensitive.)

Supported Column Data Types for Access

You can transfer data out of or into the iFIX process database using iFIX ODBC. The following table lists
iFIX and Access field types. It indicates the available transfer direction(s).

The transfer direction (In, Out) is determined by your entry in the direction field of the SQL Data block
when you define the iFIX process database. An I indicates a direction of In (for select commands) and is

© 2024 General Electric Company. All rights reserved. 17

supported for Access and iFIX field types. An O indicates a direction of Out (for parameter markers) and
is also supported. For more information on configuring SQL Data blocks, refer to the Building a SCADA
System manual.

Access field type D-
A-
T-
E
ke-
y-
w-
or-
d

TI-
M-
E
ke-
y-
w-
or-
d

T-
M-
D-
T
ke-
y-
w-
or-
d

F_
CV

A_

Date/time O O O I
Number (single, double, integer, long integer, byte) I, O I
Counter I, O I
Text I, O

Microsoft Access and iFIX Field Types

NOTE: iFIX does not support the use of data types that accept large amounts of data. For example, the MEMO
field in a Microsoft Access database or the LONG data type in an Oracle database. Do not select a column
with either data type from Run. Doing so may cause unexpected results.

Handling Errors for Access

iFIX provides the SQLERR.TXT text file, located in the C:\Program Files (x86)\Proficy\iFIX\App dir-
ectory, to help you troubleshoot communication errors from your relational database. This file contains
communication error numbers. When a communication error occurs, iFIX displays @ symbols (by
default) in a data link to indicate the problem.

If you are using Access, some of the same error numbers listed in the SQLERR.TXT file are used to
indicate relational database errors. As a result, you may see @ symbols in the run-time environment
when no communication error has occurred. To correct this problem, delete the SQLERR.TXT file.

Microsoft SQL Server

This section provides instructions and tips specific to installing and configuring Microsoft SQL Server
data sources for use with iFIX ODBC. It includes the following topics:

 l Installing Microsoft SQL Server Database

 l Installing and Configuring the SQL Server Client

 l Installing a SQL Server Driver

 l Creating the Library and Error Tables for SQL Server

 l Supported Column Data Types for SQL Server

18 © 2024 General Electric Company. All rights reserved.

dbb.chm::/dbbcover.htm
dbb.chm::/dbbcover.htm

Installing Microsoft SQL Server Database

We strongly recommend that you install SQL Server with the case-insensitive, accent-insensitive
option, which is not the default. The Binary Sort order default causes all table and column names to be
case-sensitive. Therefore, the following SQL command:

`Select ValveSetting1, ValveSetting2 from T1 where index = 23'

will not work if the table T1 is actually t1, or if the ValveSetting1 column is actually Valvesetting1, and so
on.

Installing and Configuring the SQL Server Client

SQL Server client installs from the same setup program as the database server itself. To install the cli-
ent software, select the Install SQL Server Components option from the main install screen. After a few
screens, select to install the Client Tools. Support for a variety of network protocols, including TCP/IP,
Named Pipes, and Novel IPX/SPX, will also be installed. Once the SQL Server client is installed, run
the Client Network Utility and select the network protocol you want to use.

Installing a SQL Server Driver

Install the SQL Server driver by adding it in the Control Panel from the Administrative Tools, Data
Sources (ODBC), System DSN tab.

Creating the Library and Error Tables for SQL Server

Library and Error tables can be created from the client or the server using Enterprise Manager or ISQL.
Use the following tables in this section as guides for the SQLLIB and SQLERR tables.

Field
Name

Datatype Notes

sqlnamevarchar,
size 8

Create a unique index on this field.

sqlcmd varchar,
size 100 -
255

If any of your SQL commands are longer than 255 characters, make
this field a Text field. This allows over 2 billion characters.

Microsoft SQL Server SQLLIB Table

Field Name Datatype
td datetime
node varchar, size 8
tag varchar, size 256
sqlname varchar, size 8
sql_err varchar, size 250
fix_err varchar, size 100

Microsoft SQL Server SQLERR Table

© 2024 General Electric Company. All rights reserved. 19

prog_err varchar, size 100

NOTE: SQLLIB and SQLERR are the default names for the tables. You can name them anything you want as
long as those names are reflected in the SCU. However, the field (column) names must be entered exactly
as shown.

Use the following commands to create the Library table, Index, and Error Log table if using ISQL:

create table sqllib (sqlname varchar(8) NOT NULL,
sqlcmd varchar(250) NOT NULL)

create unique index sqllib_index on sqllib (sqlname)
EXEC sp_primarykey 'sqllib', sqlname

create table sqlerr (td datetime NOT NULL,
node varchar(8) NOT NULL, tag varchar(10) NOT NULL,
sqlname varchar(8) NOT NULL, sql_err varchar(250),
fix_err varchar(100), prog_err varchar(100))

Supported Column Data Types for SQL Server

Use the following table as a guide to iFIX and SQL Server field types. The direction (I, O) refers to the dir-
ection field in the SQL Data (SQD) block. An I indicates a direction of IN (for selects) and is supported
for the SQL Server and iFIX field types. An O indicates a direction of OUT (for parameter markers) and is
also supported.

SQL Server type DATE
keyw-
ord

T-
I-
M-
E

k-
e-
y-
w-
o-
r-
d

TMDT
keyw-
ord

F_CV A_

datetime O O I
smalldatetime O O I
char/varchar O I, O
int I, O I
real I, O I
float I, O I
tinyint I, O I
smallint I, O I
text I

Microsoft SQL Server and iFIX Field Types

Oracle

20 © 2024 General Electric Company. All rights reserved.

This section provides instructions and tips specific to installing and configuring Oracle 10g for use with
iFIX. It includes the following topics:

 l Installing and Configuring Client Support

 l Installing the Oracle Driver

 l Creating the Library and Error Tables for Oracle

 l Supported Column Data Types for Oracle

Installing and Configuring Client Support

Follow these steps to install and configure 10g client support.

 To install and configure Oracle 10g client support:

 1. Install the Oracle 10g Release 2 Client. When prompted for the installation type, select
"Runtime" and then complete the install and exit.

 2. From the Oracle program group, open the Oracle Net Manager application.

 3. In the Oracle Net Manager, expand the tree and select the Service Naming item.

 4. On the Edit menu, click Create.

 5. In the Net Service Name field, enter a name and click Next.

 6. Select the TCP/IP (Internet Protocol) option and click Next.

 7. In the Host Name field, enter the computer name where the Oracle database resides, and click
Next.

 8. In the Service Name field, enter the global database name that you want. This name was set on
the Oracle database computer in Oracle 8i or later. Click Next to continue.

 9. Optionally, test the connection.

 10. Click Finish.

 11. Exit and save the configuration.

Refer to your Oracle documentation for more information.

Installing the Oracle Driver

The steps that follow describe how to install the Oracle 10g Release 2 Client, so that you can use it with
iFIX.

 To install the Oracle driver:

 1. Run the setup program for the Oracle 10g Release 2 Client.

 2. On the Welcome screen, click Next.

 3. When prompted for an installation type, select Custom Installation and click Next.

© 2024 General Electric Company. All rights reserved. 21

 4. On the Destination screen, in the Name field, change the default setting by selecting the des-
tination you used when installing the "Runtime" Client. The path should automatically change to
the path associated with the name. Click Next.

 5. On the Available Product Components screen, select the Oracle Windows Interfaces 10.2.0.1.0
and click Next.

 6. On the Product-Specific Prerequisite Check screen, click Next.

 7. On the Summary screen, click Install. When the installation completes, a final screen appears.

 8. Click Exit to finish the install.

Creating the Library and Error Tables for Oracle

Library and Error tables can be created from the client or from the server using SQL*DBA, SQL*Plus, or
any other Oracle utility. Use the following tables in this section as guides for the SQLLIB and SQLERR
tables.

Field
Name

Datatype Notes

sqlname varchar2,
size 8

Create a primary key on this field.

sqlcmd varchar2,
size 100 -
2000

If any of your SQL commands are longer than 2000 characters,
make this field a long field. This allows up to 64,000 characters.

Oracle SQLLIB Table

Field Name Datatype
td date
node varchar2, size 8
tag varchar2, size 256
sqlname varchar2, size 8
fix_err varchar2, size 100
sql_err varchar2, size 250
prog_err varchar2, size 100

Oracle SQLERR Table

NOTE: SQLLIB and SQLERR are the default names for the tables. You may name them anything you want as
long as those names are reflected in the SCU. However, the names of the columns must be spelled exactly
as shown (Oracle is not case-sensitive).

Use the following commands to create the Library table, Index, and Error Log table:

create table SQLLIB (sqlname varchar2(8) NOT NULL PRIMARY KEY, sqlcmd varchar2(1000) NOT NULL)
create table SQLERR (td date NOT NULL, node varchar2(8) NOT NULL, tag varchar2(30) NOT NULL, sqlname varchar2(8) NOT NULL PRIMARY KEY, sql_err varchar2(250), fix_err varchar2(100), prog_err varchar2(100))

Supported Column Data Types for Oracle

22 © 2024 General Electric Company. All rights reserved.

Use the following table as a guide to iFIX and Oracle field types. The direction (I, O) refers to the dir-
ection field in the SQL Data (SQD) block. An I indicates a direction of IN (for selects) and is supported
for the Oracle and iFIX field types. An O indicates a direction of OUT (for parameter markers) and is also
supported.

Oracle Type DATE
 Keyword

TIME
 Keyword

TMDT
 Keyword

F_CV A_CV

date O O I
char, varchar2 I, O
number (p,s) float I, O I

Oracle and iFIX Field Types

NOTE: iFIX does not support the use of data types that accept large amounts of data. For example, the LONG
data type in an Oracle database or the MEMO field in a Microsoft Access database are not supported. Do not
select either data type from View. Doing so may cause unexpected results.

Network Problems and Workarounds

Each time an ODBC function is called, there are two error codes that can be returned: a native database
error code and an ODBC-defined SQL state error code. The database error code is database-specific,
but the SQL state is a generic error code that is common between different ODBC drivers. For example,
when the database server is unavailable because of a network problem, SQL Server may return a 105
error code. In the same situation, Oracle may return a 6034 or a 3140 error code. But in all cases, the
SQL state should be 08S01. By using these pre-defined SQL states, the SQL task can detect when a
connection is lost and shift into backup mode.

However, in many cases, ODBC drivers do not set the SQL state correctly. To work around this prob-
lem, iFIX provides a text file called SQLERR.TXT. You can list all of your database system errors that
correspond to a communication failure in this file. If the ODBC driver does not set the SQL state cor-
rectly, the SQL task scans the SQLERR.TXT file for a match. If it finds a match, it knows a com-
munication failure has occurred. If it doesn't, the error is processed as a non-communication error.

NOTE: You may receive an wsqlodc.exe application error when using Mission Control to stop an SQL query
or to shut down iFIX. If this happens, you can still start this task and log SQL data without error.

Use the following format when editing the SQLERR text file:

! This is a comment
! General SQL*net errors for Oracle
2034
6000,6499
!
! Two-task interface errors for Oracle
3100,3199
!
! SQL Server SPX Cable break errors
237
238

You can define a single error number or an error range. In the preceding example, if Oracle returned error
code 2034, or any error between 6000-6499 or 3100-3199, the SQL task would interpret the error as a
communication failure.

The SQLERR.TXT file installs to the Application path, usually C:\Program Files (x86)\Proficy\iFIX\App.
Do not rename this file.

© 2024 General Electric Company. All rights reserved. 23

Configuring the SQL Task

The iFIX ODBC SQL task, WSQLODC.EXE, is responsible for:

 l Executing the SQT blocks that trigger.

NOTE: When using the confirm tag for an SQT block that is triggered by an event, make sure that you
define the security so that users do not have access to Mission Control to shut down the SQL task.

 l Retrieving process data from the SQD blocks and inserting the data in the relational database.

 l Selecting data from the relational database and writing the data back to the FIX® database.

 l Backing up data in the event of a network failure (backup continues until the primary and sec-
ondary paths are full).

 l Automatically restoring data to the relational database once network communications are re-
established.

Refer to the following sections for information on:

 l Modifying the Startup Options

 l Using the SQL Task Dialog Box

Modifying the Startup Options

When SQL support is enabled in the SCU, the SQL task is automatically added to the FIX SCU Task
Configuration dialog box. The SQL task can be customized for your application by adding command
parameters.

For example, if you want to define a login delay of five minutes (300 seconds), a maximum SQL com-
mand length of 1000 and a command cache of 10, enter the following parameters in each SQL task's
Parameters field:

/LD300 /CL1000 /CA10

The following table describes the command parameters available to this task.

ParameterDescription Valid Entries
/LDn Defines how often the task attempts to log onto the server after it has

lost a connection. This parameter is optional. The system defaults to
300 seconds if this parameter is not defined.

60 seconds (min-
imum).

No maximum limit
set. However, most
applications do not
need more than one
hour (3600 seconds).

/CAn Stores the specified number of SQL commands in memory (caches) to
increase performance. This parameter is optional.

Performance benefits vary depending on your relational database.
Refer to the Using Command Caching section for more information on

User specified.

No maximum limit
set. However, most
applications do not

SQL Task Command Line Parameters

24 © 2024 General Electric Company. All rights reserved.

using caching. need more than 10 to
100.

/CLn Increases the maximum allowable SQL command length from the
default of 255. For example, entering /CL1000 allows a command
length of 1,000 characters.

NOTE: Make sure that the relational database field can handle the
number of characters you define for this parameter.

User specified.

/LM Includes ODBC driver information along with relational database error
messages. When using this parameter, keep in mind that driver inform-
ation can be lengthy, and there may not be enough space for the actual
error message in enabled alarm destinations. This parameter is
optional and if omitted, no driver information is included.

None required.

/Dn Defines a startup delay before attempting to log into the SQL data-
base. Use this parameter if you encounter problems connecting to the
database during startup.

0 to 65535 seconds.

Using Command Caching

Depending upon the relational database you are using, you can improve communication performance by
adding the command caching, /CAn, parameter to the SQL task. Command caching allows each com-
mand that is retrieved and executed to be stored in memory. Performance improves the next time a com-
mand is to be executed. Because the command is in memory, it does not have to be retrieved again.

A command can be executed without actually having to access the database that stores the command.
Thus, the connection to the command table database can be broken and the task can still use the com-
mand.

Using command caching, it is possible to read a command from one database, execute it in another data-
base specified in the SQL Trigger block, and save the handle. Refer to the Using Multiple Relational
Database Support section for more information on using multiple relational databases with iFIX ODBC.

Using the SQL Task Dialog Box

The iFIX ODBC SQL Task must be configured to meet your application requirements. This is done
through the SQL Task dialog box.

The SQL Task Configuration dialog box defines how the SQL task executes SQL commands and allows
you to define how data is handled when iFIX ODBC is operating. Each dialog box field is described
below:

SQL Support – enables or disables the FIX ODBC option. Select an option button to enable or disable
this application.

Error/Debug Message Routing – displays the Configure Alarm Areas - SQL Error Messages or SQL
Debug Messages dialog box. Using this dialog box, you can enable the alarm areas that receive error
or debug messages generated by iFIX ODBC. Error messages indicate that the SQL system task
encountered an error. Debug messages provide information to help you troubleshoot the connection
to the relational database. Refer to the Implementing Alarms and Messages manual for more inform-
ation on how iFIX performs alarming.

© 2024 General Electric Company. All rights reserved. 25

alm.chm::/almcover.htm

Error/Debug message to screen – determines if error or debug messages are sent to the SQL task.
Select each check box to enable this function.

Primary and Secondary Backup Files – defines the primary and secondary back-up paths and file
names that iFIX ODBC uses when it cannot write to the relational database. If iFIX ODBC cannot
connect to the server, or loses a connection with the relational database, it backs-up data to the file
identified in the Primary path field. If iFIX ODBC fails to write to this file, it backs-up data to the file
identified in the Secondary path field.

If you set the primary path to a file server, consider setting the secondary path to a local drive. With this
configuration, if iFIX ODBC cannot connect to the server because of a bad cable connection, the sec-
ondary path can back-up data to the local drive. Once iFIX ODBC re-establishes a connection to the rela-
tional database, it first processes any backed up SQL commands and data. The back-up file is deleted
when the back-up operation completes.

NOTE: Backed-up SQL commands are processed on a first in, first out (FIFO) basis.

You can enter any valid iFIX path in these fields along with a back-up file name. Enter the path and file
name in the following format:

drive:path\filename.SQL

If your path entry does not exist at runtime, iFIX ODBC generates an error message. This is because it
tries to send back-up data to a file that is assigned no destination path. In this case, if backed-up SQL
commands and data are stored in a file, it cannot be used in restoring data. The SQL system task does
not support the following characters in backup file names:

, + * = | < > [] " : ; ?

Refer to the Backing Up and Restoring Data section for more information on how iFIX ODBC performs
backups.

NOTE: For SQT blocks to log to the primary or secondary backup files, you must select the Enable BackUp
checkbox found on the Advanced tab. You must do this for each SQT block you want to utilize backup files.

Database ID – defines the default location for both SQL commands and the data for SQL Trigger blocks.
The Database ID is the ODBC data source name specified during ODBC setup for the relational data-
base.

If you leave this field blank, you can define a Database ID in each SQL Trigger block instead.
Refer to the Using Multiple Relational Database Support section for more information on con-
necting to several relational databases simultaneously.

SQL cmd table – identifies the name of the SQL Library Table that contains the SQL commands. The
default name is SQLLIB. However, the table name can have between 1 and 31 characters (inclus-
ive). Refer to the Installing and Configuring Data Sources section for more information on the SQL
Library Table.

Error log table – identifies the name of the error log table to which the SQL task sends error messages.
If an SQL transaction fails, an entry is made to this table, providing useful information for debugging
SQL transactions.

The default name for the error log table is SQLERR. However, the table can have between 1 and
31 characters (inclusive).

26 © 2024 General Electric Company. All rights reserved.

NOTE: Completing the error log table field is optional. If no table name is entered, the application
does not record error messages to the relational database.

Task Sleep Interval – determines how often the SQL task processes the SQT blocks in the database.
Be sure to enter a time that is sufficient to monitor your application. Valid entries are 0 to 99 seconds.
The default is 5 seconds.

Once you have configured the SQL task for your application, the next step is to configure the SQL
chains in the iFIX database.

Using SQL Commands

All SQL commands are supported by iFIX ODBC. However, this manual focuses on the most fre-
quently-used SQL commands, shown below:

 l INSERT

 l UPDATE

 l SELECT

 l DELETE

SQL commands are stored in the SQL Library table. The SQL Trigger block defines which SQL com-
mand to use in this table.

INSERT Command

The INSERT command adds data from iFIX tags into a new row in the relational database. INSERT
statements can have only one record associated with them.

SQT1 – the SQL Trigger block defines the SQL name and command to use. In this example, the fol-
lowing INSERT command in the SQLLIB table executes when the SQT block triggers:

Insert into TBL1 (COL1, COL2, COL3) values (?, ?, ?);

SQD1 – the SQL Data block references three tag and field name combinations in the database, and sets
the direction for the data transfer to OUT.

T01-. AI1.A_DESC
T02-. AO1.F_CV
T03-. DO1.A_ADI

TBL1 – is the table referenced by the INSERT command that is used in the SQT block.

COL1 COL2 COL3
Pump stage 101 99.7 Hello
Temp Zone 2 (C) -2.1 ByeBye
Manual Override .004 what

© 2024 General Electric Company. All rights reserved. 27

Explanation

When the software executes this INSERT command, it creates a new row in TBL1 that contains the val-
ues of the iFIX tags and field names listed in the SQD1 block. The resulting table is shown below:

COL1 COL2 COL3
Pump stage 101 99.7 Hello
Temp Zone 2 (C) -2.1 ByeBye
Manual Override .004 what
AI1 Descriptor fld 21.04 ABDFG

AI1 Descriptor fld – comes from the AI1 block's A_DESC.

21.04 – comes from the AO1 block's F_CV.

ABDFG – comes from the DO1 block using the A_ADI field.

NOTE: If the SQL task cannot read a value from a block (for example, it attempts to read the current value of
an Analog Input block while the block is off scan), the SQL task substitutes a null value in place of the block
value. If the target column does not accept null values, a new row is not inserted and the SQL task generates
an error. The SQT block also generates an alarm.

UPDATE Command

The UPDATE command changes the values in the relational database to reflect the current values of the
iFIX tags.

SQT1 – the SQL Trigger block uses the following UPDATE command defined in the SQLLIB table:

Update TBL1 set COL1=?, COL2=? where COL3=?;

SQD1 – the SQL Data block references three tag and field name combinations in the database, and sets
the direction for the data transfer to OUT.

T01-. AI1.A_DESC
T02-. AO1.F_CV
T03-. DO1.A_ADI

TBL1 – is the table referenced by the UPDATE command used in the SQT block.

COL1 COL2 COL3
Pump stage 101 99.7 Hello
Temp Zone 2 (C) -2.1 ByeBye
Manual Override .004 what
AI1 Descriptor 21.04 ABDFG

Explanation

When the software executes this command, it looks at each value in COL3 for the value that matches
the A_ADI field for the DO1 block. Since the last row in the table matches, the system updates that row.

28 © 2024 General Electric Company. All rights reserved.

COL1 and COL2 receive new values from AI1's descriptor and AO1's current value, respectively.

The resulting table is shown below:

COL1 COL2 COL3
Pump stage 101 99.7 Hello
Temp Zone 2 (C) -2.1 ByeBye
Manual Override .004 what
New Descriptor -23.09 ABDFG

New Descriptor – comes from the AI1 block's A_DESC field.

-23.09 – comes from the AO1 block's F_CV field.

ABDFG – comes from the DO1 block using the A_ADI field.

iFIX does not support updates to a date column. If you need to update a date, we recommend that you
carefully consider the design for your relational database tables. Consider what data needs to be
accessed and how. For example, you may want to keep the year, month, and day in separate columns
and then update each column individually.

If the SQL task cannot read a value from a block, it substitutes a null value in place of the block value. If
the target column does not accept null values, rows are not updated and the SQL task generates an
error. The SQT block also generates an alarm.

SELECT Command

The SELECT command retrieves data from the relational database based on the selection criteria.

SQT1 – in this example, the SQL Trigger block uses the following SELECT command defined in the
SQLLIB table:

Select COL1, COL2 from TBL1 where COL3=?;

SQD1 – in this example, the SQL Data block references three tag and field name combinations in the
database, and sets the direction for two of them to IN and the other to OUT.

T01-. AI1.A_DESC
T02-. AO1.F_CV
T03-. DO1.A_ADI

TBL1 — is the table referenced by the SELECT command used by the SQT block.

COL1 COL2 COL3
Pump stage 101 99.7 NONE
Temp Zone 2 (C) -2.1 ByeBye
Manual Override .004 NONE
Deadband 9 ALL

© 2024 General Electric Company. All rights reserved. 29

Explanation

When the software executes this command, the value for DO1.A_ADI is read, since it is an outgoing
field. The value for the field is ALL. This command retrieves only the last row since it is the only row that
matches the selected criteria. The values from COL1 and COL2 in the last row are selected from TBL1
and are written to AI1.A_DESC and AO1.A_CV.

The new descriptor for AI1 is now Deadband. The new current value for AO1 is now 9.

The process database does not accept null values. If the SQL task reads a null value from the SQL
table, no value is written to the target database block field. Additionally, the SQT block generates an
alarm and a field write error. However, any other non-null values selected are written to the process data-
base.

Selecting Multiple Rows

iFIX ODBC can be used to access more than one row with a SELECT command and write the values to
multiple sets of tags or to multiple offsets of register blocks. This subsection describes how you can use
iFIX ODBC to select multiple rows of SQL data.

The selection mode is determined by the SQL Trigger block configuration. Use the following table to con-
figure the SQL Trigger block:

To select.... Define the Select Para-
meters field as...

And use the Rows field to determ-
ine the...

One row from several selected
rows (result set)

Single Row Row used.

Many rows Multiple Rows Starting row.
Many rows and columns Array Mode Limit of how many rows are used out

of the result set.

The SQT block's Column field is used to determine the number of columns to be used. This applies only
when using Multiple Rows and Array Mode Select Parameters.

NOTE: When querying iFIX database tags, you cannot retrieve the A_CV value from a tag or group of tags
when the tag or tags are off scan. If you try to do so, an error message appears.

Single Row

If a SELECT command returns multiple rows, you can use the SQT block's Single Row mode and the
Rows field to determine which row is written to the SQD block. When the SQT block is configured for
Single Row mode, the SQD block accepts only one row of data regardless of the number of rows the
SELECT command returns.

The SQT block's Rows field determines the row number within the result set to use. The Rows field nor-
mally defaults to zero when you select Single Row mode in the SQT block. If zero is the value in Single
Row mode, and more than one row is returned, an error results and no data is written to iFIX tags. If a
number other than zero is used, the corresponding row number returned from the selected is used.

For example, if the Row field is set to one, the first row of the selected data is used. If it is set to two as
shown in the following figure, the second row is used. In this manner you can identify the row to use.

30 © 2024 General Electric Company. All rights reserved.

Single Row Mode Example

The Columns field is ignored in this mode. The number of columns is defined by the number of tags in
the SQD block that have a direction of IN. If the number of IN tags does not match the number of
columns returned, an error results and no data is written.
Multiple Row

When the SQT block is configured for Multiple Row mode, the SQD block accepts more than one row. A
set of iFIX tags is used for each row returned. Returned values are written column by column, row by
row.

The Columns field must be configured with the correct number of columns in the SELECT command.
This information must be defined before the command is executed.

For example, consider the following SELECT statement:

Select col1, col2, col3 from table1

This command returns three columns from the database. The SQD block must contain a multiple of
three iFIX tags. If the SELECT command returns two rows of data, six tags should be specified in the
SQD block. If more rows are returned by the SELECT command than tags defined in the SQD block, the
additional rows are discarded. If less rows are returned, the extra tags in the SQD block are not written
to.

The Rows field determines the starting row to use in the selected data. For example, the Rows field can
be defined as 3. If the SELECT command returns 10 rows, the tags in the SQD block receive the values
starting with the third row. If the number of IN tags in the SQD block is not an even multiple of the num-
ber of columns returned, an error results and no data is written to the tags.

© 2024 General Electric Company. All rights reserved. 31

Multiple Row Mode Example

You can also use the SELECT command to include parameter markers. For example:

Select col1, col2, col3 from table1 where col4 = ?

In this case, three columns are returned. The command requires one tag with a direction of OUT for the
parameter marker.
Array mode

Array mode is used with register blocks. One register block is specified for each column returned from a
SELECT statement. Each register block receives multiple rows from a column. The Rows field is used
to set a limit on how many rows to write.

In the following example, the SELECT statement returns three columns and requires one parameter
marker:

Select col1, col2, col3 from table1 where col4 = ?

In array mode, the SQD block contains one IN register block for each column returned. A tag with an
OUT direction is specified in the SQD block for each parameter marker.

Each Register block receives one row of data starting with the register offset specified in the SQL Data
block. Data is written until either the Rows limit is reached (specified by the Rows field) or until the data
is exhausted.

The F_n field is used for the register block in the SQD block, where n is the offset from the base address
that the block references. For example, AR1.F_10, AR2.F_0, and AR3.F_0 are shown in the following
figure. Values from the selected data are written to the blocks starting at the offset specified, 10,0 and 0
respectively.

32 © 2024 General Electric Company. All rights reserved.

Array Mode Example

The Columns field is ignored in this mode since the number of columns is the same as the number of IN
SQD tags defined.

DELETE Command

The DELETE command removes records from the relational database based on the selection criteria.

SQT1 – the SQL Trigger block uses the DELETE command in the SQLLIB table. The DELETE com-
mand executes the following statement when the SQT block triggers:

Delete from TBL1 where COL3 = ?;

SQD1 – the SQL Data block references a tag and field name combination in the database, and sets the
direction for the data transfer to OUT.

T01-.DO1.A_ADI
T02-.
T03-.
T04-.

TBL1 – is the table referenced by the DELETE command used by the SQT block.

COL1 COL2 COL3

© 2024 General Electric Company. All rights reserved. 33

Pump stage 101 99.7 NONE
Temp Zone 2 (C) -2.1 ByeBye
Manual Override .004 NONE
Deadband 9 ALL

Explanation

The value of DO1.A_ADI is equal to NONE. When the software executes this command, the value is
read and substituted into the SQL command. The command is then:

Delete from TBL1 where COL3 = `NONE';

Since both row one and row three have ̀ NONE' as the value in column three, they are both deleted. The
resulting table is shown below:

COL1 COL2 COL3
Temp Zone 2 (C) -2.1 ByeBye
Deadband 9 ALL

Stored Procedures

Stored procedures are compiled blocks of code in the relational database. They are useful since they
can have conditional statements and flow statements. Stored procedures can perform INSERT,
UPDATE, DELETE, and SELECT commands. However, stored procedures can also take arguments
and return results. The arguments may be values to insert or values to use in where clauses.

Procedures can be much faster than SQL commands for the following reasons:

 l Executing a stored procedure requires only one call.

To execute an SQL command, two calls are made to the relational database: one to retrieve the
command and another to execute it. Using a stored procedure, the reference is made by name
and the name is passed to the database, including any parameters.

 l A stored procedure is already compiled in the database.

When using an SQL command that is not stored, both calls are ad-hoc queries, so the database
must compile them at runtime (unless caching is used). Refer to the Using Command Caching
section for more information on configuring the SQL task to use command caching.

To configure the SQL blocks to use a stored procedure, use the following information:

 l Select Procedure in the Command Type group box in the SQT block's SQL Parameters dialog
box.

 l Enter the name of the procedure in the SQL Name field, using no more than eight characters.

 l Define any input arguments required by the stored procedure using the Direction field in the SQD
block.

For example, if the stored procedure takes two input arguments and returns data from a SELECT
statement, configure the SQD block with OUT tags for the parameter markers and IN tags for the

34 © 2024 General Electric Company. All rights reserved.

results from the SELECT statement.

Refer to the Selecting Multiple Rows section for more information on configuring the database blocks to
use multiple rows of data.

NOTE: Microsoft Access does not support the use of stored procedures. If you are using Microsoft Access as
your relational database, do not use the PROCEDURE command in your command language scripts and do
not select the Stored Procedures option button in the SQL Command Configurator. Doing so can produce
unexpected results.

Using Multiple Relational Database Support

Multiple database support allows iFIX ODBC to execute commands in different databases. Imple-
menting multiple relational database support allows you to:

 l Use different user name/password combinations in a database.

 l Communicate with several different relational databases.

 l Store all SQL commands in one database and execute the commands in several different rela-
tional databases.

NOTE: The methods of storing SQL commands and using multiple relational databases discussed in this
chapter cannot be mixed.

This chapter includes the following sections:

 l Managing Multiple SQL Connections

 l Using Multiple User Accounts

 l Using Multiple Databases

 l Storing Commands Centrally

Managing Multiple SQL Connections

The SQL task manages multiple connections using the following:

When
the...

The SQL task...

System
starts up

Reads the SQL Task Configuration information from the SCU and logs into the
Database ID (if defined) in the SQL Task Configuration. This data source is the
default login.

SQT Block
triggers

Logs into a database using the following search pattern for Database IDs:

1. SQT block's Database ID.

2. SCU Database ID (location for command & Errlog tables).

3. First Database ID listed in the SQL Accounts dialog box.
Connection
is estab-
lished

Maintains the connection until the SQL task is stopped.

© 2024 General Electric Company. All rights reserved. 35

Connection
is lost

Retries the connection at the interval specified by the /LD parameter and con-
tinues processing SQL blocks to other data sources. Commands are backed up
to the backup file specified in the SCU until the SQL task can re-establish a con-
nection to the database.

Connection
is re-estab-
lished

Searches through the backup file for entries. Entries to databases that are not
connected are ignored until the connection can be re-established.

Using Multiple User Accounts

You may want to use the same database for all transactions, but have different user name/password
combinations. For example, an Oracle database can be configured for two users. One user has access
to one set of tables, the other user to other tables.

 To configure iFIX ODBC:

 1. Click the Start button and point to Programs, Administrative Tools, and then Data Sources
(ODBC). You can also access the Administrative Tools folder from the Control Panel.

The ODBC Data Source Administrator program opens.

 2. Select the System DSN tab.

 3. Select the Add button. The Add Data Sources dialog box appears.

 4. Select the type of relational database you want to use and click OK. A dialog box appears.

 5. In the Data Source Name field, enter the data source name. For example, enter ORA_USER1.
Make sure the data source name matches the name defined in your project.

 6. In the Server field, enter the name of your relational database server.

 7. Click OK or continue through the rest of the configuration.

 8. Repeat steps 3-7 to add another DSN. For example, ORA_USER2. Make sure that the inform-
ation you enter matches the first DSN (since they are for the same database), except for the
name.

 9. In the SCU, configure two SQL login accounts (one for each data source) and give each account
a different user name and password.

 10. In the SQT blocks, in the Database ID field, create the iFIX database chains, defining the correct
account, ORA_USER1 or ORA_USER2.

The SQL Task Configuration does not include a reference to a database identifier. Instead, you must
define the Oracle account in each SQT block using the Database ID field.

When an SQT block triggers to execute a command using ORA_USER1, the SQL task logs into the rela-
tional database with the this user name and password. When an SQT block triggers to execute a com-
mand using ORA_USER2, the SQL task logs into the same database but with a different user
name/password combination.

Using Multiple Databases

36 © 2024 General Electric Company. All rights reserved.

You can use iFIX ODBC to access several different relational databases you have installed in your con-
figuration. In this mode, the command and error log table can also be located in the same account.
However, the tables must use a consistent naming convention. For example, if you name the SQL com-
mand table SQLLIB in one relational database, you must use this name in the other relational databases.

You can store recipes to download in an Access database and log plant values in an Oracle database.
 To define this configuration:

 1. In the Control Panel, select Administrative Tools, and then Data Sources (ODBC). Select the
System DSN tab, and click add to create an ODBC data source for each relational database. For
example, the data sources can be called ACC_DB and ORA_DB.

 2. In the SCU, configure two SQL accounts (one for each data source). The Database ID field
should be the data source names defined in the previous step: ACC_DB and ORA_DB.

 3. In the SQL Task Configuration dialog box, leave the Database ID field blank.

 4. In each SQT block, in the Database ID field, type the appropriate database ID to access the rela-
tional database.

The SQL Task Configuration does not include a reference to a database identifier. Instead, define the
relational database in the Database ID field of each SQT block.

When SQT1 triggers, the configured command executes in the database, ACC_DB, defined in the block
configuration. In this example, the chain triggers a recipe download. The blocks defined in the SQD
block accept the downloaded recipe values. The iFIX database chain for SQT2 logs plant values to the
Oracle database using ORA_DB as the Database ID.

Storing Commands Centrally

Multiple database support can store all the SQL commands and errors in one location. You can then run
these commands to access data in other relational databases. For example, you can store all of your
configured commands in one Access database, the recipes to download in another Access database,
and log plant values to an Oracle database.

 To define this configuration:

 1. In the Control Panel, select Administrative Tools, and then Data Sources (ODBC). Select the
System DSN tab, and click add to create an ODBC data source for each relational database. For
example, the data sources can be called CMD_DB, ACC_DB, and ORA_DB.

 2. In the SCU, configure three SQL login accounts (one for each data source). The Database ID
field should be the data source names defined in the previous step: CMD_DB, ACC_DB, and
ORA_DB.

 3. In the SQL Task Configuration dialog box, define CMD_DB as the Database ID field. The list of
configured Database IDs in the Accounts dialog box is presented when the browse (...) button is
selected.

 4. In each SQT block, in the Database ID field, type the appropriate database ID to access the rela-
tional database. For example, if the command is executed in the Access database, then for the
SQT block, in the Database ID field, type ACC_DB.

Refer to the Configuration for Multiple Databases figure to view the information you need to define in the
SCU to use two different relational databases. The Database ID in the SQL Task Configuration refers to

© 2024 General Electric Company. All rights reserved. 37

the relational database table that is used to store all the SQL commands that are used with all of the rela-
tional databases. The SQT block Database ID field defines where the command is executed. The fol-
lowing figure illustrates the information you need to define in the SCU to use a relational database to
store all the SQL commands.

When executing a SQL command, the command is retrieved from the CMD_DB database and executed
in the relational database specified in the SQT block.

Monitoring and Controlling Database Communication

There are a few ways you can monitor and control iFIX ODBC during runtime operation. Since you can
observe your process from an operator display, the procedures described in this chapter relate to what
you can do through display links:

 l Changing Block Settings Through Links

 l Transaction Tracking

Changing Block Settings Through Links

The real power of the software is in its ability to perform process operations tailored to your needs. You
can use the SQL block fields in links to provide greater flexibility in communicating with the relational
database. Using these link fields, you can create pictures that allow you to:

 l Manually trigger SQT blocks.

 l Reset the trigger specifications.

 l Reset the SQD block specifications.

The link fields that are available for use with the two SQL blocks can be accessed through the Properties
dialog box in the Database Manager.

 To access these link fields:

 1. Start the Database Manager.

 2. In Ribbon view, on the View tab, in the Settings group, click Properties.

- Or -

In Classic view, on the View menu, click Properties.

The Properties dialog box appears.

Manually Triggering the Application

iFIX ODBC allows you to trigger SQT blocks through a time, a date, or a tag-based event. You can also
manually trigger the execution of an SQL command through a link, providing direct control over iFIX
ODBC while testing a new process or while monitoring the performance of your application.

38 © 2024 General Electric Company. All rights reserved.

By defining a Data link with the A_TRIP field, you can first change the SQT block's mode to Manual and
then enter a 1 to trigger the SQT block manually. This provides a powerful means of executing SQL com-
mands on demand.

Resetting Time/Date/Events Specifications

Even if you have defined a time, a date, or an event-based triggering scheme, you can change these set-
tings through links. This lets you redefine the operation of your system without modifying the SQT
blocks. It provides you with the ability to change the execution of a batch, the upload of process inform-
ation, or suspend operation until maintenance is performed on critical operating equipment.

For example, if iFIX ODBC downloads batch recipes that are stored in a relational database, operation
can be suspended and rescheduled to a future date through a display link.

The following figure shows a cookie production line that has experienced a mechanical failure. The next
recipe download has been rescheduled by changing the trigger time through a display link.

NOTE: When a Text block is used to trigger an event, ODBC SQL can only read the first 40 characters from
the block's A_CV field. If you include more than 40 characters in this field, the additional text is ignored.

Resetting Execution Times Through Links

Resetting SQD Blocks

© 2024 General Electric Company. All rights reserved. 39

The SQD blocks are modifiable from an operator display. Through links, you can:

 l Redefine tag and field name assignments, either by adding new ones, or deleting existing ones
(using A_TF01-20 fields).

 l Change the direction of the data transfer (using A_DIR01-20 fields).

 l Reset fields in the block (using A_RST01-20 fields).

Transaction Tracking

The following field parameters in the SQT block display information that can help you in debugging your
setup or help monitor real-time transactions:

 l A_SEQ displays a transaction number indicating that the block has recognized an event. Trans-
action numbers increment from 1 to 255.

 l A_XTIME displays the time of the last transaction.

 l A_XDATE displays the date of the last transaction.

 l A_STATE displays the current operating state of each SQT block.

 l A_DBERR displays the native database error number of the last SQL command executed.

 l A_SQLST displays the SQL state of the last SQL command executed.

40 © 2024 General Electric Company. All rights reserved.

Displaying Alarm and Application Messages

iFIX is capable of sending system-wide error, debug, and system messages relating to iFIX ODBC.
These alarm and trace messages can appear in the SQL task's window and in alarm destinations. Refer
to the following sections for more information:

 l Displaying Alarms

 l Displaying Process Messages

 l Generating Status Reports

Displaying Alarms

The SQL blocks and the SQL task can be set up for independent alarm and security areas. System mes-
sages that are displayed through Alarm Summary Display links provide you with real-time iFIX ODBC
information. The SQL blocks can generate unique alarms that you can monitor through an Alarm Sum-
mary link or in other alarm destinations.

When building a display to monitor your SQL application, consider adding a Data link that connects to
the SQL Trigger block. This block has two alarm link parameters: current alarm (A_CUALM) and latched
alarm (A_LAALM). These link parameters display the alarms and block errors listed (by priority) in the fol-
lowing table.

Alarm or
Block Error

Description

ERROR An undetermined error occurred.
SQL LOG An error occurred and the SQL application could not connect to the relational database

or you lost a connection.
SQL CMD An error occurred because the application could not find the SQL command or the com-

mand was too long.
FLD READ An error occurred while reading an iFIX field.
FLD WRIT An error occurred while writing to an iFIX field.
DAT MATC An error occurred because the number of values in the SQL command does not match

the number of items in the SQL Data block.
OK No error has occurred.

SQL Trigger Block Alarms and Block Errors

Refer to the Implementing Alarms and Messages manual for more information on alarming.

Displaying Process Messages

Error, debug, and system messages can be viewed in the following locations:

© 2024 General Electric Company. All rights reserved. 41

alm.chm::/almcover.htm

 l The SQL task window.

 l Alarm destinations.

Messages
appear in...

If...

The SQL
task win-
dow

The Error msg to screen check box or the Debug msg to screen check box
is selected.

Alarm des-
tinations

One or more alarm areas are enabled in either the Configure Alarm Areas -
SQL Error Messages or SQL Debug Messages dialog box. You also need
to enable the required Alarm Services for these selected alarm areas.

Displaying Alarms

You can display SQL block alarms using the Alarm Summary Link. SQL alarms appear in this link if the
SQT block generates an alarm.

Generating Status Reports

You can display the setup and status of iFIX ODBC in Mission Control, on the SQL tab. Each status
field is described in the following table.

Status
Code

Description

Alarm adi Displays the enabled alarm areas.
Debug adi Displays the enabled debug areas.
Alarm
screen

Indicates whether alarm messages are sent to the SQL task.
 Yes = send messages; No = send no messages.

Debug
screen

Indicates whether debug messages are sent to the SQL task.
 Yes = send messages; No = send no messages.

Sql cmd
tbl

Name of the SQL Library Table.

Sql err tbl Name of the SQL Error Log Table.
Sql cmd
dbid

Name of the Database Identifier specified in the SCU's SQL Task Configuration.

Prim file Primary back-up file.
Second.
file

Secondary back-up file.

Login
delay

Number of seconds to wait before attempting to login once a connection is lost. The default
is 300 seconds.

Max sql-
cmd

Maximum SQL command length.

NodenameName of the local node.
Current
status

Identifies the status of the SQL task. This field can display whether the SQL task is logged
onto one or several relational databases.

Caching Status of SQL caching.

System Task Status Codes

42 © 2024 General Electric Company. All rights reserved.

status

Backing Up and Restoring Data

During normal operation of iFIX ODBC, data communication takes place successfully across the net-
work as required by your application. Refer to the following sections for more details:

 l Backing Up Data

 l Restoring Back-up Data

Backing Up Data

If the SCADA node running iFIX ODBC loses a connection to the relational database, every INSERT,
UPDATE, and DELETE command that is enabled for backup is automatically sent to either a primary or
secondary back-up file.

In situations where the server connection is lost for long periods of time, iFIX ODBC backs up data until
the:

 l Primary and secondary back-up paths (disks) are full.

 l Connection to the server is re-established.

 l SQL task is stopped by an operator.

IMPORTANT: iFIX ODBC does not back up a SELECT command's request because there is no means of
accurately determining when the connection to the server can be re-established. Since the SELECT com-
mand writes values to the process database, the process of selecting must be performed on a controlled and
predictable basis (not whenever the connection is re-established).

Restoring Back-up Data

When iFIX ODBC re-establishes a connection with the server, it automatically restores the backed up
SQL commands in chronological order, starting with the first backed up SQL command. iFIX ODBC
restores backed up data as described below:

 1. All backed up SQL commands are restored from both primary and secondary back-up files.

 2. iFIX ODBC processes backed up SQL commands in the order in which they were backed up.
This means that the backed up SQL commands are processed in a first in, first out (FIFO) basis.

 3. Once all SQL commands are restored, the system deletes the back-up files.

NOTE: If large back-up files are created, restoring the SQL commands and data can take a considerable
amount of time. However, new SQL commands from the SCADA node are also processed while the files are
restored.

© 2024 General Electric Company. All rights reserved. 43

44 © 2024 General Electric Company. All rights reserved.

Index

A

alarming 41

API 5

ODBC 5

architecture

single tier ODBC 4

typical ODBC 3

B

backing up SQL commands 43

blocks 10

SQD block 10

SQT block 10

C

caching 25

client support 2

column data types 20

supported by Microsoft Access 17

supported by Oracle 22

supported by SQL Server 20

command caching 25

configuring

ODBC data sources 15

SCU for ODBC data sources 16

SQL Server client 19

D

DAO

definition of 5

referencing DAO object library 5

using Jet 6

using ODBCDirect 6

Data Access Objects 5

See DAO 5

data sources

accessing with DAO 8

accessing with RDO 9

accessing with VBA 8

configuring for iFIX ODBC 15

configuring for VBA 8

system 13

user 13

verifying and editing 15

database layer 2

DELETE command 33

displaying ODBC alarms 41

displaying ODBC messages 41

E

editing ODBC data sources 15

error handling for Microsoft Access 18

G

generating status reports 42

I

iFIX ODBC 10

communication process 10

configuring for Access data sources 16

configuring for Oracle data sources 20

configuring for SQL Server data sources 18

© 2024 General Electric Company. All rights reserved. 45

displaying alarm messages 40

displaying application messages 40

displaying status 42

multiple relational database support 11

running as a service 13

setting up 11, 13

SQD block 10

SQL task 10

SQT block 10

INSERT command 27

J

Jet 6

Joint Engine Technology 6

See Jet 6

L

library and error tables 19

creating for Microsoft Access 16

creating for Oracle 22

creating for SQL Server 19

links 38

using SQL block fields in 38

listener processes 2

M

Microsoft Access

creating library and error tables 16

error handling 18

installing a driver 16

supported column data types 17

Mission Control 42

displaying iFIX ODBC status 42

multiple relational database support 11

multiple user accounts 36

N

network layer 2

O

ODBC Administrator program 2

ODBC API 5

ODBC application 2

ODBC architecture 3

single tier 4

typical 3

ODBC driver 12

definition of 2

installing 12

ODBC driver manager 2

ODBC terms 2

ODBCDirect 6

Oracle

configuring a driver 21

creating the library and error tables 22

supported column data types 22

R

RDO 7

definition of 7

referencing RDO object library 7

Remote Data Objects 7

See RDO 7

46 © 2024 General Electric Company. All rights reserved.

restoring SQL commands 43

S

SCU 16

configuring for ODBC data sources 16

security 41

SELECT command 29

SPX adapter 21

SQD block 39

as part of iFIX ODBC 9

resetting 39

SQL block fields 38

using in links 38

SQL commands

DELETE 33

INSERT 27

most frequently-used SQL commands 27

SELECT 29

storing centrally 37

triggering through a link 38

UPDATE 28

SQL Server

creating library and error tables 19

installation 19

installing a driver 19

supported column data types 20

SQL Server client 19

SQL task 24

command line parameters 24

status codes 42

status report 42

what it does 9

WSQLODC.EXE 24

SQT block 10

alarms 41

field parameters 40

triggering 38

status 42

viewing 42

stored procedures 34

system data sources 13

T

transaction tracking 40

transactions 40

tracking through SQT block 40

U

UPDATE command 28

user data sources 13

V

verifying ODBC data sources 15

W

WSQLODC.EXE 24

© 2024 General Electric Company. All rights reserved. 47

	Cover Page
	Table of Contents
	Using SQL
	bookmark1

	SQL Overview
	ODBC Term Definitions
	ODBC Architecture
	Typical ODBC Architecture
	Single Tier ODBC Architecture

	Accessing SQL Data Sources Through VBA
	Data Access Objects (DAO)
	Joint Engine Technology (Jet)
	ODBCDirect

	Remote Data Objects (RDO)
	Configuring Data Sources
	Accessing ODBC Data Sources
	Accessing an ODBC Data Source with DAO
	Accessing an ODBC Data Source with RDO

	iFIX ODBC
	Understanding the Communication Process
	proc1

	Understanding Multiple Relational Database Support
	Setting Up iFIX ODBC
	proc1
	proc2

	Installing an ODBC Driver
	Configuring an ODBC Data Source
	System and User Data Sources

	Running iFIX ODBC as a Service
	The FIXODBC.ini File
	Example FIXODBC.ini File

	Installing and Configuring Data Sources
	Configuring an ODBC Data Source
	proc1

	Verifying and Editing an ODBC Data Source
	proc1

	Configuring the SCU for an ODBC Data Source
	Microsoft Access
	Installing an Access Driver
	Creating the Library and Error Tables for Access
	proc1

	Supported Column Data Types for Access
	Handling Errors for Access

	Microsoft SQL Server
	Installing Microsoft SQL Server Database
	Installing and Configuring the SQL Server Client
	Installing a SQL Server Driver
	Creating the Library and Error Tables for SQL Server
	Supported Column Data Types for SQL Server

	Oracle
	Installing and Configuring Client Support
	proc1

	Installing the Oracle Driver
	proc1

	Creating the Library and Error Tables for Oracle
	Supported Column Data Types for Oracle

	Network Problems and Workarounds

	Configuring the SQL Task
	Modifying the Startup Options
	Using Command Caching

	Using the SQL Task Dialog Box

	Using SQL Commands
	INSERT Command
	bookmark1

	UPDATE Command
	bookmark1

	SELECT Command
	bookmark1
	Selecting Multiple Rows
	bookmark1
	bookmark2
	bookmark3

	DELETE Command
	bookmark1

	Stored Procedures

	Using Multiple Relational Database Support
	Managing Multiple SQL Connections
	Using Multiple User Accounts
	proc1

	Using Multiple Databases
	proc1

	Storing Commands Centrally
	proc1

	Monitoring and Controlling Database Communication
	Changing Block Settings Through Links
	proc1
	Manually Triggering the Application
	Resetting Time/Date/Events Specifications
	Resetting SQD Blocks

	Transaction Tracking

	Displaying Alarm and Application Messages
	Displaying Alarms
	Displaying Process Messages
	bookmark1

	Generating Status Reports

	Backing Up and Restoring Data
	Backing Up Data
	Restoring Back-up Data

	Index

